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Abstract 
One of the greatest abilities of the human eyes are 
their ability to perceive depth, an essential skill that 
allows us to preform fundamental tasks, such as 
avoiding obstacles and retrieving objects, as well as 
complicated tasks, such as driving a car. As 
advancements in the robotics field allows robots to 
successfully perform these aforementioned tasks, 
the need for simulated depth perception, ideally in 
an efficient manner, continues to grow. With the 
specific application of creating an efficient depth 
finding algorithm for robots with simple binocular 
cameras, various optimizations, introduced by Dr. 
Felzenszwalb of the University of Chicago, were 
applied to a naïve belief propagation algorithm to 
achieve more efficient belief propagation in depth 
finding. This paper provides an overview of the 
native belief propagation algorithm, the algorithm 
optimizations, and experimental results and analysis 
on the impact of these optimizations on algorithm 
performance. 
 

I. Naive Belief Propagation Algorithm 
The general approach to accurately approximating a 
disparity depth map from two frame images is loopy 
belief propagation, a method that assigns each pixel 
in the disparity depth map to a value, which 
corresponds to the depth of the pixel in the two 
frame images. Each pixel has an energy, consisting 
of a fixed data cost based on the pixel's value 
assignment and discontinuity cost, which depends 
on the value assignments to the pixel's neighboring 
pixels [4]. During an iteration, each pixel sends a 
message to each of its neighbors with an 
information vector containing the cost the neighbor 
will incur based on every possible value assignment 
to the pixel currently sending the message [2]. The 
algorithm loops through every possible pixel value 
assignment in order to find the value assignment 
that minimizes the energy of each pixel, based on 
the messages received from its neighbors. Over 
each successive iteration, the pixels receive 
discontinuity cost information from more distant 
pixels and are reassigned accordingly, decreasing 
the total energy of the graph from the previous 

iteration [2]. When run over many iterations, the 
naive belief propagation algorithm's total energy 
converges, producing a reasonably accurate 
disparity depth map approximation. 
 
II. Felzenszwalb's Optimized Belief Propagation 

Algorithm 
The Felzenszwalb algorithm uses three optimization 
techniques, including fast message updates, grid 
graph, and multi-grid, on the naive belief 
propagation algorithm in its belief propagation 
approach.  
 

A. Optimization 1: Fast Message Updates 
The fast message updates technique computes 
message updates in linear time by expressing these 
updates as min convolutions [2]. Instead of 
computing the optimal value assignment of the 
current pixels with the optimal value assignment of 
each neighboring pixel together, the optimal value 
assignment of the neighboring pixels can be 
computed independently of the current pixel's 
values. The algorithm needs only to iterate over the 
possible pixel values for each neighboring pixel 
twice; thus, message updates can be computed in 
linear, in contrast to the standard quadratic, time.  
 

B. Optimization 2: Grid Graph 
The grid graph technique computes messages in 
linear time by passing messages to every other pixel 
on even iterations and vice versa on odd iterations. 
This technique eliminates the need to store 
messages from the previous iteration for calculating 
and updating current messages.  
 

C. Optimization 3: Multi-Grid 
The multi-grid technique involves running the belief 
propagation algorithm in a coarse-to-fine manner, 
which increases the efficiency of passing messages 
over long-range distances by building a data 
pyramid of message updates [2]. At the highest 
level of the data pyramid, the algorithm runs in a 
coarse manner and passes messages over a large 
number of iterations. Running in a progressively 
finer manner, the number of message-passing 
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iterations is reduced at each successive level. The 
Felzenszwalb algorithm is approximately the 
application of these techniques to the naive belief 
propagation algorithm. 
 

III. Algorithm Efficiency Experiments 
In order to compare and evaluate the efficiency and 
accuracy of these algorithms, the naïve belief 
propagation algorithm and the Felzenszwalb 
optimized belief propagation algorithm were used to 
generate disparity depth maps of two-frame images 
from the Middlebury Stereo Datasets [1]. Both the 
naïve and optimized algorithms were implemented 
in Java for the experiments. The comparison data 
consists of the runtime and total energy for each 
algorithm recorded over a range of belief 
propagation iterations values. Because all of the 
algorithms attempt to minimize the overall graph 
energy, an algorithm that minimizes its total energy 
over less iteration is considered more efficient than 
an algorithm whose total energy reduces more 
slowly. Furthermore, as the correct disparity depth 
map is reached, the total energy of the graph will 
converge to approximately its minimum value. 
Naturally, an algorithm whose total energy 
converges over less iteration is preferred. 
 

A. Resulting Disparity Depth Map Images 
 

 
Figure 1: Disparity Depth Map resulting from naive belief 
propagation algorithm for 5000 iterations 

 
Figure 2: Disparity Depth Map resulting from naive belief 
propagation algorithm with Felzenszwalb optimizations for 5000 
iterations 

 
Figure 3: Disparity Depth Map resulting from Felzenszwalb 
belief propagation algorithm with 5000 iterations 

 
B. Algorithm Performance Graphs 

 

 
Figure 4: Iterations vs. Performance of the naive belief 
propagation algorithm, the naive belief propagation algorithm 
with Felzenszwalb optimizations, and the Felzenszwalb belief 
propagation algorithm. 
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Figure 5: Iterations vs. Total Energy of the naive belief 
propagation algorithm, the naive belief propagation algorithm 
with Felzenszwalb optimizations, and the Felzenszwalb belief 
propagation algorithm. 

From the data, it can be observed that the 
Felzenszwalb algorithm converges more quickly 
and has a shorter runtime than the naive belief 
propagation algorithm. Furthermore, the 
Felzenszwalb algorithm and naive belief 
propagation incorporating the Felzenszwalb 
optimization techniques have roughly the same 
runtime and convergence time; thus, by applying 
these optimization techniques to a naive belief 
propagation algorithm, the Felzenszwalb 
algorithm's performance can be achieved. 

IV. Conclusions 

Based on the comparisons of the Felzenszwalb 
algorithm and the naive belief propagation 
algorithm using the criteria of belief propagation 
iterations versus runtime and belief propagation 
iterations versus total graph energy, it can be 
reasonably confirmed that the Felzenszwalb 
optimizations increase both the runtime and 
accuracy of the belief propagation algorithm over a 
fixed iteration period. Furthermore, as the Java 
implementation of the Felzenszwalb algorithm and 
the naive belief propagation algorithm incorporating 
the Felzenszwalb optimization techniques have 
reasonably close accuracy and runtime 
performances, it can be confirmed that 
Felzenszwalb's proposed techniques improve the 
runtime and accuracy of naive belief propagation 
algorithms. Future optimizations to be explored 
include implementing the Felzenszwalb optimized 
belief propagation algorithm with parallelization.  

Efficient computer vision techniques have strong 
applications in robotics. This belief propagation 

algorithm is efficient enough to run on even a small 
processor with little memory, allowing simple, 
inexpensive robots to calculate consistent depth 
information with comparable accuracy to their more 
expensive robot counterparts. Inexpensive robots 
with increased capability makes robotics research 
more accessible; thus, enabling the field to continue 
growing and improving. 
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